Coefficients of Correlation and Covariance
population pearson correlation coefficient
sample pearson correlation coefficient
sample covariance:
Regarding longitudinal data, the correlation matrix would be
Here j=1….t as a time point at i=1….n subject. For example a longitudinal data set:
head(obs.matrix)
wt.2 wt.3 wt.0 wt.1 wt.4
3 13.1 13.8 NA NA NA
6 15.8 16.2 14.9 15.1 NA
20 NA NA NA NA 13.3
21 14.3 14.9 14.2 14.3 NA
27 14.9 NA NA 14.7 16.0
40 NA NA NA NA 13.3
dim(obs.matrix)
[1] 87 5
There is correlation matrix using the function cor(method='pearon'). The correlation matrix is symmetric matrix with 1 diagonal.
correlation coefficient ranges from -1 to 1. r=1 means perfect linear relation, and r=0 indicate no linea correlation,
and r=-1 indicates Y would increase with X decrease.
correlation coefficient ranges from -1 to 1. r=1 means perfect linear relation, and r=0 indicate no linea correlation,
and r=-1 indicates Y would increase with X decrease.
cor.matrix<-round(cor(obs.matrix,use="pairwise.complete.obs"),3)
cor.matrix
wt.2 wt.3 wt.0 wt.1 wt.4
wt.2 1.000 0.965 0.963 0.964 0.973
wt.3 0.965 1.000 0.971 0.943 0.966
wt.0 0.963 0.971 1.000 0.955 0.946
wt.1 0.964 0.943 0.955 1.000 0.934
wt.4 0.973 0.966 0.946 0.934 1.000
There is covariance matrix using the function cov(method='pearon').:
cov.matrix<-round(cov(obs.matrix,use="pairwise.complete.obs"),3)
cov.matrix
wt.2 wt.3 wt.0 wt.1 wt.4
wt.2 3.008 3.054 2.849 2.824 3.120
wt.3 3.054 3.932 2.912 2.794 3.831
wt.0 2.849 2.912 2.820 2.492 2.965
wt.1 2.824 2.794 2.492 2.644 2.802
wt.4 3.120 3.831 2.965 2.802 3.720
The next, I would like to show how to calculate correlation coefficient between two time point wt.2 and wt.3.
Here is the scatterplot.
Here is the scatterplot.
plot(wt.2~wt.3, data=obs.matrix)
r=cor(obs.matrix$wt.2,obs.matrix$wt.3, use="pairwise.complete.obs")
r
[1] 0.9647316
text(12,15, bquote(italic(r)~'='~.(round(r,4))))
The correlation coefficient between wt.2 and wt.3 is r=0.9647316 and covariance cov=3.054.
> #remove NA
> sub<-obs.matrix[!(is.na(obs.matrix[,'wt.2'])|is.na(obs.matrix[,'wt.3'])),c('wt.2','wt.3')]
> #mean values of wt.2
> (wt.2.mean<-mean(sub$wt.2))
[1] 13.89273
> #mean values of wt.3
> (wt.3.mean<-mean(sub$wt.3))
[1] 14.51818
> #variance values of wt.2
> (wt.2.var<-var(sub$wt.2))
[1] 3.126613
> #variance values of wt.3
> (wt.3.var<-var(sub$wt.3))
[1] 3.205219
> #covariance of wt.2 and wt.3
> c=sum((sub$wt.2-wt.2.mean)*(sub$wt.3-wt.3.mean))
> c/(nrow(sub)-1) #sample covariance
[1] 3.054024
> v=sqrt(sum((sub$wt.2-wt.2.mean)^2))*sqrt(sum((sub$wt.3-wt.3.mean)^2))
> c/v #correlation coefficient
[1] 0.9647316
No comments:
Post a Comment