Mathematics: Geometric Series
- Definition of Geometric Series
Geometric Series is
Proof :
if |x|<1 and
Consider the two functions below, and therefore there is Y>0 if 0<p<1. but log(Y) is 0~
if log(1/(1-p)), and - if log(p/(1-p))
if log(1/(1-p)), and - if log(p/(1-p))
R code
p<-seq(0,1, 0.001)
#
plot(x=p, y=1/(1-p), ylim=c(0,100), type='l', lwd=5,col='blue')
points(x=p, y=p/(1-p), type='l', lwd=2,col='red')
abline(v=1)
text(.2,80, 'blue:f(p)=1/(1-p), 0<p<1')
text(.2,60, 'red:f(p)=p/(1-p), 0<p<1')
#log function
plot(x=p, y=log(1/(1-p)), ylim=c(-8,8), type='l', lwd=5,col='blue')
points(x=p, y=log(p/(1-p)), type='l', lwd=2,col='red')
- Variants of geometric series
Proof
So
if |x|<1 and , So
No comments:
Post a Comment