Linear regression: Adjusted variables plot (AVPLOT)
First, regress dependent variable Y on all other explanatory variables except variable Xj. Here regress weight on height.
Call:
lm(formula = wt ~ ht, data = d)
Residuals:
Min 1Q Median 3Q Max
-2.44736 -0.55708 0.01925 0.49941 2.73594
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.694768 0.427398 -20.34 <2e-16 ***
ht 0.235050 0.005257 44.71 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9017 on 183 degrees of freedom
Multiple R-squared: 0.9161, Adjusted R-squared: 0.9157
F-statistic: 1999 on 1 and 183 DF, p-value: < 2.2e-16
First, regress dependent variable Xj on all other explanatory variables. Here regress age on height.
Call:
lm(formula = age ~ ht, data = d)
Residuals:
Min 1Q Median 3Q Max
-18.722 -4.168 -1.222 3.467 20.625
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -74.01432 3.11317 -23.77 <2e-16 ***
ht 1.29736 0.03829 33.88 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 6.568 on 183 degrees of freedom
Multiple R-squared: 0.8625, Adjusted R-squared: 0.8618
F-statistic: 1148 on 1 and 183 DF, p-value: < 2.2e-16
Finally compare the residuals of the model I and the model II. The below is AVPLOT
Call:
lm(formula = residual_WtHt ~ residual_ageHt)
Residuals:
Min 1Q Median 3Q Max
-2.48498 -0.53548 0.01508 0.51986 2.77917
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.261e-15 6.624e-02 0.000 1.000
residual_ageHt 5.368e-03 1.014e-02 0.529 0.597
Residual standard error: 0.901 on 183 degrees of freedom
Multiple R-squared: 0.001529, Adjusted R-squared: -0.003927
F-statistic: 0.2802 on 1 and 183 DF, p-value: 0.5972
Also, we could do the process using MLR
Call:
lm(formula = wt ~ age + ht, data = d)
Residuals:
Min 1Q Median 3Q Max
-2.48498 -0.53548 0.01508 0.51986 2.77917
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.297442 0.865929 -9.582 <2e-16 ***
age 0.005368 0.010169 0.528 0.598
ht 0.228086 0.014205 16.057 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.9035 on 182 degrees of freedom
Multiple R-squared: 0.9163, Adjusted R-squared: 0.9154
F-statistic: 995.8 on 2 and 182 DF, p-value: < 2.2e-16
Both of the slope determined by AVPLOT (model III) and by MLR are 5.368e-03.
No comments:
Post a Comment